

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2025 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS MAXIMUM MAR		KS = 100	
NOTE: (i)	Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and ONE Question from SECTION-C . ALL questions carry EQUAL marks.		
(ii)	All the parts (if any) of each Question must be attempted at one place instead of at different		
(iii)	places. ii) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.		
(iv)	No Page/Space be left blank between the answers. All the blank pages of Answer Book must		
(v)	Extra attempt of any question or any part of the attempted question will not be considered.		
(vi) Use of Calculator is allowed.			
SECTION-A			
Q. No.1.(a)	Let Q^+ be the set of positive ration prove that $(Q^+, *)$ is a group.	al numbers and define $*$ by $a * b = \frac{ab}{2}$ then	(10)
(b)	Find all the cyclic subgroups of Z_{18} .		(10)
Q. No.2. (a)	A homomorphism $\varphi: Z_6 \to Z_6$ is a one to one mapping then calculate $\text{Ker}(\varphi)$.		(10)
(b)	Check whether the vectors $a = (1, 2, 3), b = (2, 5, 7)$ and $c = (1, 3, 5)$ are linearly dependent or independent.		(10)
Q. No.3. (a)	Let <i>V</i> be a vector space of all 2×2 matrices. W be a subspace of V which consists of all symmetric matrices then find two different basis of W.		(10)
(b)	Consider the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ Check whether T is linear or not.	R^2 given by $T(x, y, z) = (x , y+z)$.	(10)
SECTION-B			
Q. No.4. (a)	Find all the real numbers $x \in R$ such	that $x^2 + x > 2$.	(10)
(b)	Use the definition of limit to establish	that $\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{4}{5}$.	(10)
Q. No.5. (a)	Use Mean Value Theorem to show the	at $e^x \ge 1 + x \forall x \in R$.	(10)
(b)	Find the absolute extrema of the function $f(x, y) = xy - 2x$ on the region R given by vertices $(0, 4)$, $(4, 0)$ and $(0, 0)$.		(10)
Q. No.6. (a)	Change the order of integration in dou	ble integral $\int_0^2 \int_0^{\sqrt{x}} f(x, y) dy dx.$	(10)
(b)	Draw the graph of the conic $r = 2Cos$	5θ.	(10)
SECTION-C			
Q. No.7. (a)	Check that the Cauchy-Riemann Equation $f(Z) = \frac{1}{Z}$.	uations are satisfied in polar coordinates for	(10)
(b)	Evaluate the contour integral $\oint_C f(Z)$ simple closed contour OABO with O	C) dZ where $f(Z) = y - x - 3ix^2$ and C is = 0+0i, A = 0+i and B = 1+i.	(10)
Q. No.8. (a)	Use Cauchy Residue Theorem where C is the circle $ Z = 2$.	to evaluate the integral $\int_C \frac{5Z-2}{Z(Z-1)} dZ$	(10)
(b)	Find the Maclaurin series for the func	$tion f(Z) = Z^2 e^{3Z}.$	(10)
	****	**************************************	