

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS = 100

- NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and ONE Question from SECTION-C. ALL questions carry EQUAL marks.
 - (ii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
 - (iii) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
 - (iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
 - (v) Extra attempt of any question or any part of the attempted question will not be considered.
 - (vi) Use of Calculator is allowed.

SECTION-A

Q. 1. (a) Find centre of S_3 .

- (10)
- **(b)** Using the row operations, show that the matrix $\begin{pmatrix} 1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3 \end{pmatrix}$ has no inverse. (10) **(20)**
- **Q. 2.** (a) For any group G, show that $\frac{G}{\{e\}} \cong G$ and $\frac{G}{G} \cong \{e\}$. (10)
 - (b) Suppose U and W are distinct four dimensional subspaces of a vector space V of (10) (20) dimension six. Find the possible dimension of $U \cap W$.
- **Q. 3.** (a) For what value of α is the matrix $\begin{pmatrix} -\alpha & \alpha 1 & \alpha + 1 \\ 1 & 2 & 3 \\ 2 \alpha & \alpha + 3 & \alpha + 7 \end{pmatrix}$ is singular? (10)
 - (b) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (-x_3, x_1, x_1 + x_3)$. Find N(T). Is T one-to- (10) (20)

SECTION-B

- **Q. 4.** (a) Find the value of θ and the limit in order that $\lim_{x\to 0} \frac{\sin 2x + \theta \sin x}{x^3}$ be finite. (10)
 - **(b)** Show that $x < \sin^{-1} x < \frac{x}{\sqrt{1 x^2}}$, 0 < x < 1. (10) **(20)**
- **Q. 5.** (a) Given that $U = \frac{1}{|x^2 + y^2 + z^2|}$. Verify that $U_{xx} + U_{yy} + U_{zz} = 0$. (10)
 - **(b)** Evaluate $\iint (x^2 + y^2) dx dy$, over the domain bounded by $y = x^2$ and $x = y^2$. (10)
- Q. 6. (a) Evaluate $\iint (x^2 + y^2) dx dy$, over the region bounded by xy=1, y=0, y=x and x=2. (10)
 - (b) Find an equation of a normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ in the form (10) (20) $ax \cos \theta + by \cot \theta = a^2 + b^2$. Prove that the normal is external bisector of the angle between the focal distances of its foot.

PURE MATHEMATICS

SECTION-C

- Q. 7. (a) Determine k such that $U = e^{2x} \cos ky$ is harmonic and find a conjugate harmonic. (10)
 - **(b)** Evaluate $\int_C (\frac{1}{z^5} + z^3) dz$ from 1 to -1 along the upper arc of the unit circle. (10)
- **Q. 8.** (a) Find the Laurent Series of $\frac{1}{1-z^2}$ in the region 0 < |z-1| < 2. (10)
 - **(b)** Find the residues at the singular points of $\frac{-Z^2 22z + 8}{Z^3 5z^2 + 4z}$ which lie inside the circle |z|=2.
