

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2018 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT PURE MATHEMATICS

Roll Number

(10)

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS = 100

- NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and ONE Question from SECTION-C. ALL questions carry EQUAL marks.
 - (ii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
 - (iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
 - (iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
 - (v) Extra attempt of any question or any part of the attempted question will not be considered.
 - (vi) Use of Calculator is allowed.

SECTION-A

- Q. 1. (a) Let H and K be normal subgroups of a group G. Show that HK is a normal subgroup of G. (10)
 - Let H and K be normal subgroups of a group G such that $H \subseteq K$. Then show that

$$(G/H)/(K/H) \cong G/K \tag{10}$$

- Q. 2. (a) Show that every finite integral domain is a field.
 - **(b)** Consider the following linear system, (10) **(20)**

$$x + 2y + z = 3$$

$$ay + 5z = 10$$

$$2x + 7y + az = b$$

- (i) Find the values of a for which the system has unique solution.
- (ii) Find the values of the pair (*a*, *b*) for which the system has more than one solution.
- **Q. 3.** (a) Find condition on a,b,c so that vector (a,b,c) in \mathbb{R}^3 belongs to (10)

W= span
$$\{u_1, u_2, u_3\}$$
 where $u_1 = (1,2,0), u_2 = (-1,1,2), u_3 = (3,0,-4).$

(b) Let W_1 and W_2 be finite dimensional subspaces of a vector space V. Show that $dimW_1 + dimW_2 = dim(W_1 \cap W_2) + dim(W_1 + W_2)$

SECTION-B

Q.4. (a) Let
$$f(x) = \begin{cases} x^2 & if \ x \le 1 \\ x & if \ x > 1 \end{cases}$$
 (10)

Does the Mean Value Theorem hold for f on $\left[\frac{1}{2}, 2\right]$.

(b) Calculate the.
$$\lim_{x\to 0} \frac{lnsin3x}{lnsinx}$$
 (10) (20)

Q. 5. (a) Evaluate
$$\int_{-1}^{5} |x-2| dx$$
. (10)

(b) Prove that
$$f_{xy}(0,0) \neq f_{yx}(0,0)$$
 if (10)

$$f(x,y) = \begin{cases} x^2 y \sin \frac{1}{x} & \text{when } x, y \text{ are not both } 0\\ 0 & \text{when } x, y \text{ are both } 0 \end{cases}$$
Page 1 of 2

PURE MATHEMATICS

- **Q. 6.** (a) Find the area of the region bounded by the cycloid $x = a(\theta \sin \theta), \ y = a(1 \cos \theta)$ and its base. (10)
 - **(b)** Find the equation of a plane through (5,-1,4) and perpendicular to each of the planes (10)

x + y - 2z - 3 = 0 and 2x - 3y + z = 0

SECTION-C

- **Q.7.** (a) Express $\cos^5 \theta \sin^3 \theta$ in a series of sines of multiples of θ . (10)
 - (b) Use Cauchy's Residue Theorem to evaluate the integral $\int_C \frac{5z-2}{Z(Z-1)} dz$ where C (10) (20) is the circle |z| = 2, described counter clock wise.
- Q. 8. (a) Find the Laurent series that represent the function $f(z) = \frac{z+1}{z-1}$ in the domain $1 < |z| < \infty$.
 - **(b)** Expand f(x) = sinx in a Fourier cosine series in the interval $0 \le x \le \pi$. (10)
