

FEDERAL PUBLIC SERVICE COMMISSION

Roll Number

COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17

UNDER THE FEDERAL GOVERNMENT

PHYSICS, PAPER-I

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARKS = 20**PART-I(MCQS): MAXIMUM 30 MINUTES** PART-II MAXIMUM MARKS = 80

- NOTE: (i) Part-II is to be attempted on the separate Answer Book.
 - Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
 - All the parts (if any) of each Question must be attempted at one place instead of at different
 - Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (iv)
 - No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
 - Extra attempt of any question or any part of the question will not be considered. (vi)

	(vii)	Use of Calculator is allowed.						
<u>PART – II</u>								
Q. 2.	(a)	Describe Einstein postulates of special theory of Relativity. Express the difference between the special and the general theories of Relativity.	(10)					
	(b)	Establish the energy-mass relationship and give its significance.	(10)	(20)				
Q. 3.	(a)	Differentiate between Fermi-Dirac, Bose-Einstein and Maxwell Statistics. Give application of each.	(10)					
	(b)	Draw a labelled diagram of a nuclear reactor and give significance of each part.	(10)	(20)				
Q. 4.	(a)	Distinguish between the linear and angular momentum. Express Newton's second law in terms of the linear and angular motion.	(10)					
	(b)	Discuss the acceptor and rejecter electronic circuits.	(10)	(20)				
Q. 5.	(a)	Describe and explain the Miller indices. Recognize the symbols <111>, [010], (111).	(10)					
	(b)	Discuss the closest packed crystal structures.	(10)	(20)				
Q. 6.	(a)	Can you imagine a three dimensional diffraction grating? Describe in detail.	(10)					
	(b)	Justify the dual nature of light with elaborative examples.	(10)	(20)				

- Q. 7. (a) State and explain the three laws of Thermodynamics. (10)
 - What is a heat engine? Determine the efficiency of the engine if it takes 10,000 J **(b)** (10)(20)of heat and delivers 2000 J of work per cycle.

(10 each)

(20)

Q. 8. Write notes on any **TWO** of the following:

(a) Mickelson-Morley experiment and its latest usage in a recent Nobel award.

- (b) Unification of forces and Abdus Salam contribution.
- (c) An essay on Large Hadron Partical Accelerator.

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-II

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARI PART-I(MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MARI								
NOTE: (i) Part-II is to be attempted on the separate Answer Book.								
(ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.								
(iii) All the parts (if any) of each Question must be attempted at one place instead of at different								
places.								
	(iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.							
	(v) No Page/Space be left blank between the answers. All the blank pages of Answer Book mus be crossed.							
	(vi) Extra attempt of any question or any part of the question will not be considered.							
	(vii)	Use of Calculator is allowed.						
		<u>PA</u>	RT – II					
Q. 2.	(a)	Consider an infinitely long cylindrical insulating shell of inner radius a , and outer radius b , and has a uniform volume charge density ρ . If a line of charge density λ is placed along the axis of the shell then determine the electric field intensity at a point r such that (i) $a < r < b$ and (ii) $r > b$.						
	(b)	Determine the energy density for	a capacitor.		(6)			
	(c)	Discuss the Lorentz force.	a cap access		(6) (20			
Q. 3.	(a)	Find the magnetic energy density	for the magnetic fiel	d of the industor	(10)			
Q. J.	(a) (b)	Sate and explain the Lenz's law.	for the magnetic fier	u of the maactor.	(6)			
	(c)	Why is the work done by a mag zero?	gnetic field on a ch	arged particle always	(4) (20			
Q. 4.	(a)	Describe the properties of each of, an electron and the light, that show their dual nature.			(8) (6)			
	(b)	State and explain the de Broglie h	ypothesis?		. ,			
	(c)	Metals A, B and C have work fun light of wavelength 320nm is inci (i) Which metals exhibit photo (ii) Maximum kinetic energy of	ctions 2.2eV, 3.6eV dent on these, then find belectric effect?	nd	(6) (20			
Q. 5.	(a)	Determine the transmission co-e	•	0 0,	(14)			

Q. 5. (a) Determine the transmission co-efficient for a particle having energy E incident on a rectangular barrier, so that $E < V_0$, the barrier is given by

$$V(x) = \begin{cases} +V_0 & for -a < x < a \\ 0 & for |x| > a \end{cases}$$

- (b) For an operator \hat{A} , we know $[\hat{H}, \hat{A}] = 0$, where \hat{H} is the Hamiltonian operator, what can we conclude about the eigen states of \hat{A} and the $\langle \hat{A} \rangle$?
- (c) Give two examples for the operator \hat{A} , given in part (b) above. (2) (20)

PHYSICS, PAPER-II

Q. 6. (a) Describe the electrical conduction in different types of solids in terms of (8) band theory. Explain the crystal structure of diamond. **(b)** (6) Find the carrier concentration of electrons in Silicon at a temperature (c) **(6) (20)** of 25°C. Q. 7. What factors contribute to the stability of a nucleus? Draw and explain the (10)(a) plot of neutron number N versus atomic number Z for stable nuclei. Explain the use of chain reaction in relation to a nuclear reactor. (6) **(b)** The stable isotope of potassium is ¹⁹K, what kind of radioactivity do you (c) **(4) (20)** expect from ¹⁸K? Give reasons. Q. 8. Write notes on any **TWO** of the following: (10 marks each) (20)Poynting Vector (a)

Fusion in stars

MOSFET

(b)

(c)